

The Future of Analog IC Technology [™]

DESCRIPTION

The MP2354 is a monolithic step down switch mode converter with a built in internal power MOSFET. It achieves 2A continuous output current over a wide input supply range with excellent load and line regulation.

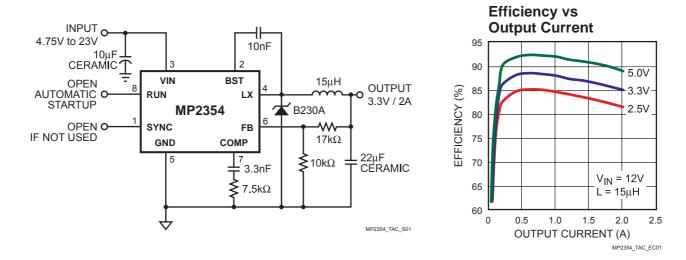
Current mode operation provides fast transient response and eases loop stabilization.

Fault condition protection includes cycle-by-cycle current limiting and thermal shutdown. In shutdown mode the regulator draws 20µA of supply current.

EVALUATION BOARD REFERENCE

Board Number	Dimensions
EV2354DS-00A	2.3"X x 1.4"Y x 0.5"Z

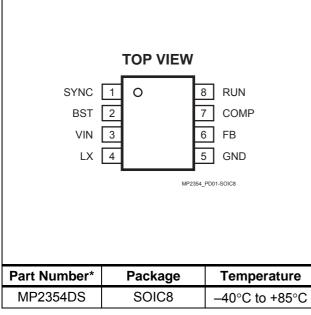
FEATURES


- 0.18Ω Internal Power MOSFET Switch
- Stable with Low ESR Output Ceramic Capacitors
- Up to 95% Efficiency
- 2A Output Current
- Wide 4.75V to 23V Operating Input Range
- Fixed 380KHz Frequency
- Thermal Shutdown
- Cycle-by-Cycle Over Current Protection
- Programmable Under Voltage Lockout
- Frequency Synchronization Input
- Operating Temperature: -40°C to +85°C
- Available in an 8-Pin SO Package

APPLICATIONS

- Distributed Power Systems
- Battery Chargers
- Pre-Regulator for Linear Regulators

"MPS" and "The Future of Analog IC Technology" are Trademarks of Monolithic Power Systems, Inc.


TYPICAL APPLICATION

MPS.

MP2354 - 2A, 23V, 380KHz STEP-DOWN CONVERTER

PACKAGE REFERENCE

* For Tape & Reel, add suffix –Z (eg. MP2354DS–Z) For Lead Free, add suffix –LF (eg. MP2354DS–LF–Z)

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage (V _{IN})	25V
Switch Voltage (V _{LX})	1V to +26V
Bootstrap Voltage (V _{BST})	V _{LX} + 6V
Feedback Voltage (V _{FB})	–0.3 to +6V
Enable/UVLO Voltage (V _{RUN})	–0.3 to +6V
Comp Voltage (V _{COMP})	–0.3 to +6V
Sync Voltage (V _{SYNC})	–0.3 to +6V
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	-65°C to +150°C

Recommended Operating Conditions ⁽²⁾

Input Voltage (V _{IN})	4.75V to 23V
Operating Temperature	–40°C to +85°C

Thermal Resistance ⁽³⁾	$\boldsymbol{\theta}_{JA}$	$\boldsymbol{\theta}_{JC}$	

SOIC8...... 105..... 50... °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- The device is not guaranteed to function outside of its operating conditions.
- Measured on approximately 1" square of 1 oz copper.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 12V, T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Feedback Voltage	V _{FB}	$4.75V \leq V_{IN} \leq 23V$	1.198	1.222	1.246	V
Upper Switch On Resistance	R _{DS(ON)1}			0.18		Ω
Lower Switch On Resistance	R _{DS(ON)2}			10		Ω
Upper Switch Leakage		$V_{RUN} = 0V, V_{LX} = 0V$		0	10	μA
Current Limit ⁽⁴⁾			2.7	3.4		А
Current Sense Transconductance Output Current to Comp Pin Voltage	G _{cs}			1.95		A/V
Error Amplifier Voltage Gain	A _{VEA}			400		V/V
Error Amplifier Transconductance	G_{EA}	$\Delta I_{\rm C} = \pm 10 \mu A$	500	700	1000	μA/V
Oscillator Frequency	f _S		342	380	418	KHz
Short Circuit Frequency		V _{FB} = 0V		35		KHz
Sync Frequency		Sync Drive 0V to 2.7V	445		600	KHz
Maximum Duty Cycle	D _{MAX}	V _{FB} = 1.0V		90		%
Minimum Duty Cycle	D _{MIN}	V _{FB} = 1.5V			0	%

ELECTRICAL CHARACTERISTICS (continued)

$V_{IN} = 12V$, $T_A = +25^{\circ}C$, unless otherwise noted.

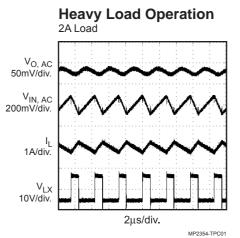
Parameter	Symbol	Condition	Min	Тур	Max	Units
RUN Shutdown Threshold		I _{CC} > 100μA	0.7	1.0	1.3	V
RUN Pull Up Current		V _{RUN} = 0V	1.0	1.3		μA
EN UVLO Threshold Rising		V _{EN} Rising	2.37	2.5	2.62	V
EN UVLO Threshold Hysteresis				210		mV
Supply Current (Shutdown)		$V_{RUN} \le 0.4 V$		20	35	μA
Supply Current (Quiescent)		$V_{RUN} \ge 2.8V, V_{FB}$ = 1.5V		1.0	1.2	mA
Thermal Shutdown				155		°C

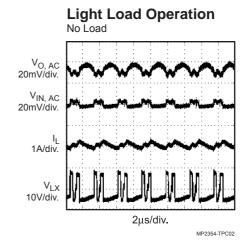
Note:

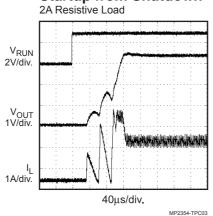
4) Equivalent output current = 1.5A ≥ 50% Duty Cycle
 2.0A ≤ 50% Duty Cycle

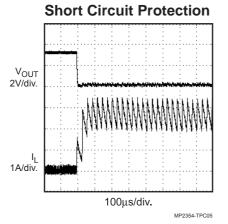
Assumes ripple current = 30% of load current.

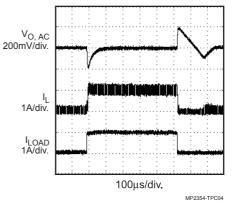
Slope compensation changes current limit above 40% duty cycle.


PIN FUNCTIONS

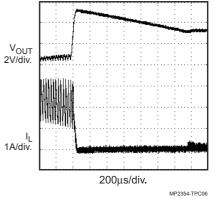

Pin #	Name	Description
1	SYNC	Synchronization Input. This pin is used to synchronize the internal oscillator frequency to an external source. There is an internal $11k\Omega$ pull down resistor to GND, therefore leave SYNC unconnected if unused.
2	BST	Bootstrap (C5). This capacitor is needed to drive the power switch's gate above the supply voltage. It is connected between LX and BST pins to form a floating supply across the power switch driver. The voltage across C5 is about 5V and is supplied by the internal +5V supply when the LX pin voltage is low.
3	VIN	Supply Voltage. The MP2354 operates from a +4.75V to +23V unregulated input. C1 is needed to prevent large voltage spikes from appearing at the input.
4	LX	Switch. This connects the inductor to either VIN through M1 or to GND through M2.
5	GND	Ground. This pin is the voltage reference for the regulated output voltage. For this reason care must be taken in its layout. This node should be placed outside of the D1 to C1 ground path to prevent switching current spikes from inducing voltage noise into the part.
6	FB	Feedback. An external resistor divider from the output to GND, tapped to the FB pin sets the output voltage. To prevent current limit run away during a short circuit fault condition the frequency foldback comparator lowers the oscillator frequency when the FB voltage is below 700mV.
7	COMP	Compensation. This node is the output of the transconductance error amplifier and the input to the current comparator. Frequency compensation is done at this node by connecting a series R-C to ground. See the Compensation section for exact details.
8	RUN	Enable/UVLO. A voltage greater than 2.62V enables operation. Leave RUN unconnected for automatic startup. An Under Voltage Lockout (UVLO) function can be implemented by the addition of a resistor divider from V_{IN} to GND. For complete low current shutdown it's the RUN pin voltage needs to be less than 700mV.


TYPICAL PERFORMANCE CHARACTERISTICS


Circuit of Figure 2, V_{IN} = 12V, V_O = 3.3V, L1 = 15µH, C1 = 10µF, C2 = 22µF, T_A = +25°C, unless otherwise noted.




Startup from Shutdown



OPERATION

The MP2354 is a current mode regulator. The COMP pin voltage is proportional to the peak inductor current. At the beginning of a cycle: the upper transistor M1 is off; the lower transistor M2 is on (refer to Figure 1), the COMP pin voltage is higher than the current sense amplifier output; and the current comparator's output is low. The rising edge of the 380KHz CLK signal sets the RS Flip-Flop. Its output turns off M2 and turns on M1 thus connecting the SW pin and inductor to the input supply. The increasing inductor current is sensed and amplified by the Current Sense Amplifier. Ramp compensation is summed to Current Sense Amplifier output and compared to the Error Amplifier output by the Current Comparator. When the Current Sense Amplifier plus Slope Compensation signal exceeds the COMP pin voltage, the RS Flip-Flop is reset and the MP2354 reverts to its initial M1 off, M2 on state. If the Current Sense Amplifier plus Slope Compensation signal does not exceed the COMP voltage, then the falling edge of the CLK resets the Flip-Flop.

The output of the Error Amplifier integrates the voltage difference between the feedback and the 1.23V bandgap reference. The polarity is such that an FB pin voltage lower than 1.222V increases the COMP pin voltage. Since the COMP pin voltage is proportional to the peak inductor current an increase in its voltage increases current delivered to the output. The lower 10Ω switch ensures that the bootstrap capacitor voltage is charged during light load conditions. External Schottky Diode D1 carries the inductor current when M1 is off.

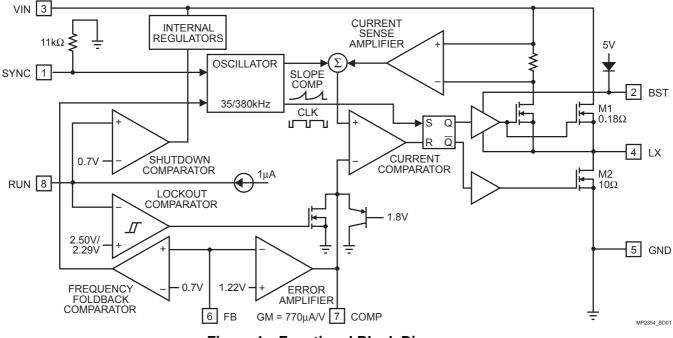


Figure 1—Functional Block Diagram

APPLICATION INFORMATION

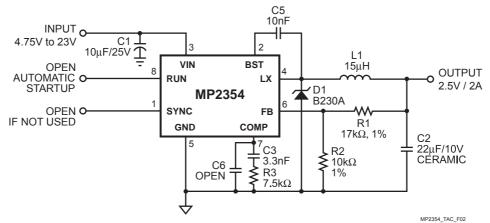


Figure 2—Typical Application Circuit

Sync Pin Operation

The SYNC pin driving waveform should be a square wave with a rise time less than 20ns. Minimum High voltage level is 2.7V. Low level is less than 0.8V. The frequency of the external sync signal needs to be greater than 445KHz.

A rising edge on the SYNC pin forces a reset of the oscillator. The upper transistor M1 is switched off immediately if it is not already off. 250ns later M1 turns on connecting LX to V_{IN} .

Setting the Output Voltage

The output voltage is set using a resistive voltage divider from the output to FB (see Figure 2). The voltage divider divides the output voltage down by the ratio:

$$V_{FB} = \frac{V_{OUT} \times R2}{R1 + R2}$$

Where V_{FB} is the feedback voltage and V_{OUT} is the output voltage.

Thus the output voltage is:

$$V_{OUT} = \frac{1.23 \times \left(R1 + R2\right)}{R2}$$

R2 can be as high as $100k\Omega$, but a typical value is $10k\Omega$. Using that value, R1 is determined by:

$$R1 = 8.18 \times (V_{OUT} - 1.23)(k\Omega)$$

For example, for a 3.3V output voltage, R2 is $10k\Omega,$ and R1 is $17k\Omega.$

Inductor

The inductor is required to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor will result in less ripple current that will result in lower output ripple voltage. However, the larger value inductor will have a larger physical size, higher series resistance, and/or lower saturation current. A good rule for determining the inductance to use is to allow the peak-to-peak ripple current in the inductor to be approximately 30% of the maximum switch current limit. Also, make sure that the peak inductor current is below the maximum switch current limit. The inductance value can be calculated by:

$$L = \frac{V_{OUT}}{f_S \times \Delta I_L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Where V_{IN} is the input voltage, f_S is the 380KHz switching frequency, and ΔI_L is the peak-to-peak inductor ripple current.

Choose an inductor that will not saturate under the maximum inductor peak current. The peak inductor current can be calculated by:

$$I_{LP} = I_{LOAD} + \frac{V_{OUT}}{2 \times f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Where I_{LOAD} is the load current.

Table 1 lists a number of suitable inductors from various manufacturers. The choice of which style inductor to use mainly depends on the price vs. size requirements and any EMI requirement.

Vendor/	Core	Core	Package Dimensions (mm)					
Model	Туре	Material	W	L	Н			
Sumida								
CR75	Open	Ferrite	7.0	7.8	5.5			
CDH74	Open	Ferrite	7.3	8.0	5.2			
CDRH5D28	Shielded	Ferrite	5.5	5.7	5.5			
CDRH5D28	Shielded	Ferrite	5.5	5.7	5.5			
CDRH6D28	Shielded	Ferrite	6.7	6.7	3.0			
CDRH104R	Shielded	Ferrite	10.1	10.0	3.0			
Toko								
D53LC Type A	Shielded	Ferrite	5.0	5.0	3.0			
D75C	Shielded	Ferrite	7.6	7.6	5.1			
D104C	Shielded	Ferrite	10.0	10.0	4.3			
D10FL	Open	Ferrite	9.7	1.5	4.0			
Coilcraft	Coilcraft							
DO3308	Open	Ferrite	9.4	13.0	3.0			
DO3316	Open	Ferrite	9.4	13.0	5.1			

 Table 1—Inductor Selection Guide

Input Capacitor

The input current to the step-down converter is discontinuous, therefore a capacitor is required to supply the AC current to the step-down converter while maintaining the DC input voltage. Use low ESR capacitors for the best performance. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic capacitors may also suffice. Choose X5R or X7R dielectrics when using ceramic capacitors.

Since the input capacitor (C1) absorbs the input switching current it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated by:

$$\mathbf{I_{C1}} = \mathbf{I_{LOAD}} \times \sqrt{\frac{V_{OUT}}{V_{IN}}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

The worst-case condition occurs where:

$$I_{C1} = \frac{I_{LOAD}}{2}$$

For simplification, choose the input capacitor whose RMS current rating greater than half of the maximum load current.

The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum capacitors, a small, high quality ceramic capacitor, i.e. 0.1μ F, should be placed as close to the IC as possible. When using ceramic capacitors, make sure that they have enough capacitance to provide sufficient charge to prevent excessive voltage ripple at input. The input voltage ripple caused by capacitance can be estimated by:

$$\Delta V_{\text{IN}} = \frac{I_{\text{LOAD}}}{f_{\text{S}} \times \text{C1}} \times \frac{V_{\text{OUT}}}{V_{\text{IN}}} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)$$

Output Capacitor

The output capacitor is required to maintain the DC output voltage. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended. Low ESR capacitors are preferred to keep the output voltage ripple low. The output voltage ripple can be estimated by:

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_{S} \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times \left(R_{ESR} + \frac{1}{8 \times f_{S} \times C2}\right)$$

Where L is the inductor value, C2 is the output capacitance value and R_{ESR} is the equivalent series resistance (ESR) value of the output capacitor.

In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage ripple can be estimated by:

$$\Delta V_{OUT} = \frac{V_{OUT}}{8 \times f_{S}^{2} \times L \times C2} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

In the case of tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated to:

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times R_{ESR}$$

The characteristics of the output capacitor also affect the stability of the regulation system. The

www.MonolithicPower.com MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited. © 2006 MPS. All Rights Reserved.

MP2354 can be optimized for a wide range of capacitance and ESR values.

Output Rectifier Diode

The output rectifier diode supplies the current to the inductor when the upper transistor M1 is off. Use a Schottky diode to reduce losses due to the diode forward voltage and recovery times.

Choose a diode whose maximum reverse voltage rating is greater than the maximum input voltage, and whose current rating is greater than the maximum load current.

Table 2 provides the Schottky diode part numbers based on the maximum input voltage and current rating.

Table 2—Schottky Rectifier Selection Guide

	2A Load Current				
V _{IN} (Max)	Part Number	Vendor ⁽⁵⁾			
15V	30BQ015	4			
	B220	1			
20V	SK23	6			
	SR22	6			
	20BQ030	4			
	B230	1			
26V	SK23	6			
	SR23	3, 6			
	SS23	2, 3			

Note:

5) Refer to Table 3 for Rectifier Manufacturers

Table 3—Schottky Diode Manufacturers

#	Vendor	Web Site
1	Diodes, Inc.	www.diodes.com
2	Fairchild Semiconductor	www.fairchildsemi.com
3	General Semiconductor	www.gensemi.com
4	International Rectifier	www.irf.com
5	On Semiconductor	www.onsemi.com
6	Pan Jit International	www.panjit.com.tw

Compensation

MP2354 employs current mode control for easy compensation and fast transient response. The system stability and transient response are controlled through the COMP pin. COMP pin is the output of the internal transconductance error amplifier. A series capacitor-resistor combination sets a pole-zero combination to control the characteristics of the control system. The DC gain of the voltage feedback loop is given by:

$$A_{VDC} = R_{LOAD} \times G_{CS} \times A_{VEA} \times \frac{V_{FB}}{V_{OUT}}$$

Where A_{VEA} is the error amplifier voltage gain, 400V/V; G_{CS} is the current sense transconductance, 1.95A/V; R_{LOAD} is the load resistor value.

The system has two poles of importance. One is due to the compensation capacitor (C3) and the output resistor of error amplifier, and the other is due to the output capacitor and the load resistor. These poles are located at:

$$f_{P1} = \frac{G_{EA}}{2\pi \times C3 \times A_{VEA}}$$
$$f_{P2} = \frac{1}{2\pi \times C2 \times R_{LOAD}}$$

Where G_{EA} is the error amplifier transconductance, 770µA/V.

The system has one zero of importance, due to the compensation capacitor (C3) and the compensation resistor (R3). This zero is located at:

$$f_{Z1} = \frac{1}{2\pi \times C3 \times R3}$$

Smaller f_{Z1} provides more phase margin, but longer transient settling time. A trade-off has to be made between the stability and the transient response. A typical value is less than one-fourth of the crossover frequency.

The system may have another zero of importance, if the output capacitor has a large capacitance and/or a high ESR value. The zero, due to the ESR and capacitance of the output capacitor, is located at:

$$f_{ESR} = \frac{1}{2\pi \times C2 \times R_{ESR}}$$

In this case, a third pole set by the compensation capacitor (C6) and the compensation resistor (R3) used to is compensate the effect of the ESR zero on the loop gain. This pole is located at:

$$f_{P3} = \frac{1}{2\pi \times C6 \times R3}$$

The goal of compensation design is to shape the converter transfer function to get a desired loop gain. The system crossover frequency where the feedback loop has the unity gain is important. Lower crossover frequencies result in slower line and load transient responses, while higher crossover frequencies could cause system unstable. A good rule of thumb is to set the crossover frequency to approximately onetenth of the switching frequency. Switching frequency for the MP2354 is 380KHz, so the desired crossover frequency is around 38KHz.

Table 4 lists the typical values of compensation components for some standard output voltages with various output capacitors and inductors. The values of the compensation components have been optimized for fast transient responses and good stability at given conditions.

Table 4—Compensation Values for TypicalOutput Voltage/Capacitor Combinations

\mathbf{V}_{OUT}	L1	C2	R3	C3	C6
2.5V	10µH min.	22µF Ceramic	5.6kΩ	4.7nF	None
3.3V	15µH min.	22µF Ceramic	7.5kΩ	3.3nF	None
5V	15µH min.	22µF Ceramic	11kΩ	2.2nF	None
12V	22µH min.	22µF Ceramic	27kΩ	1nF	None
2.5V	10µH min.	560μF Al. 30mΩ ESR	140kΩ	1nF	120pF
3.3V	15µH min.	560μF Al 30mΩ ESR	187kΩ	1nF	82pF
5V	15µH min.	470μF Al. 30mΩ ESR	237kΩ	1nF	56pF
12V	22µH min.	220μF AI. 30mΩ ESR	267kΩ	1nF	22pF

To optimize the compensation components for conditions not listed in Table 4, the following procedure can be used.

1) Choose the compensation resistor (R3) to set the desired crossover frequency. Determine the R3 value by the following equation:

$$R3 = \frac{2\pi \times C2 \times f_{C}}{G_{EA} \times G_{CS}} \times \frac{V_{OUT}}{V_{FB}}$$

2) Choose the compensation capacitor (C3) to achieve the desired phase margin. For applications with typical inductor values, setting the compensation zero, f_{Z1} , to less than one forth of the crossover frequency provides sufficient phase margin. Determine the C3 value by the following equation:

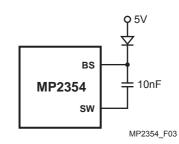
$$C3 > \frac{4}{2\pi \times R3 \times f_C}$$

Where R3 is the compensation resistor value.

3) Determine if the second compensation capacitor (C6) is required. It is required if the ESR zero of the output capacitor is located at less than half of the 380KHz switching frequency, or the following relationship is valid:

$$\frac{1}{2\pi \times C2 \times R_{ESR}} < \frac{f_S}{2}$$

If this is the case, then add the second compensation capacitor (C6) to set the pole $f_{\rm P3}$ at the location of the ESR zero.


Determine the C6 value by the equation:

$$C6 = \frac{C2 \times R_{ESR}}{R3}$$

External Bootstrap Diode

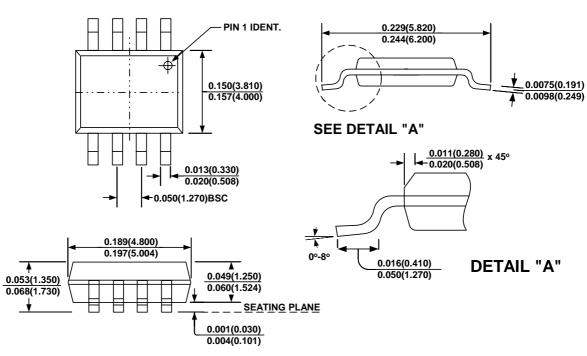

It is recommended that an external bootstrap diode be added when the system has a 5V fixed input or the power supply generates a 5V output. This helps improve the efficiency of the regulator. The bootstrap diode can be a low cost one such as IN4148 or BAT54.

Figure 3—External Bootstrap Diode

This diode is also recommended for high duty cycle operation (when $\frac{V_{OUT}}{V_{IN}}$ >65%) and high output voltage (V_{OUT}>12V) applications.

PACKAGE INFORMATION

SOIC8

NOTE:

1) Control dimension is in inches. Dimension in bracket is millimeters.

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.